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FOREWORD 
 
 

This report is the result of a theoretical development and examination of the generalized  
adjoint concept and the conditions under which systems analysis using adjoints is valid. The  
results developed in this report are useful aids for the analysis and modeling of physical  
systems, including the development of guidance and control algorithms, and in developing 
simulations.* This report defines and develops the generalized adjoint of an input-output system.  
The generalized adjoint of a system may be used to represent the inverse of a system, which  
may be used in systems analysis. Furthermore, the generalized adjoint condenses system  
behavior in a way that facilitates analysis of the effect of noise and disturbance on a system.  
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1 INTRODUCTION

Generalized adjoint systems are de�ned and analyzed in this report. A generalized adjoint
system is an input-output system that is derived from a given causal (possibly nonlinear)
input-output system. The basic properties of the generalized adjoint system are that it is
linear, causal (in fact, memoryless), and is time invariant when the original system is time
invariant. Given a space of causal input-output systems, a map from this space of systems to
its generalized adjoints, referred to as the adjoint map, is de�ned. The adjoint map is
bounded, continuous, and preserves translations. Under certain conditions, and involving the
Hahn-Banach theorem, the adjoint map has a bounded and continuous inverse. A
representation for the inverse of a causal input-output system in terms of the generalized
adjoint is given. It is seen that if the original input-output system is one to one/onto, then its
generalized adjoint is onto/one to one. The reverse of these implications may be obtained
under some completeness conditions. In the �rst step of developing a representation of the
inverse to the original input-output system using the generalized adjoint system, another
input-output system, which has the behavior of the original input-output system, is de�ned.
This input-output system is referred to as the auxiliary input-output system. Conditions for
the auxiliary input-output system to be causal, bounded, and continuous are given.
Conditions for the map between the original input-output system and the auxiliary
input-output system to be invariant with respect to translations, bounded, continuous, and to
have a continuous inverse are given. It is then shown that the generalized adjoint system is a
representation for the inverse of the auxiliary input-output system and therefore also of the
original input-output system. A method for computing noise and disturbance bounds for an
input-output system involving the generalized adjoint system is discussed. An example
illustrating Chapters 4, 5, and some of 6 is presented. Portions of this report appeared in [8],
[10], and [12].
A rough description of the generalized adjoint system is illustrated in Figure 1. A precise

description is given in Chapter 3. It is best to keep in mind the construction of the adjoint of
a linear transformation in Banach space. Let B = f(Z;B; Y )g be a set of causal input-output
systems, where Y is the input space of time functions and Z is the output space of time
functions and B : Y ! Z is the system map. For B 2 B, a truncated input-output system
Bt : Y0 ! Z0 is de�ned for each t 2 <, where Y0 (Z0) is the input (output) space of truncated
time functions de�ned up to time zero. In this scenario, the system trajectory t! Bt may be
considered as a time function. This type of set, namely B, will be the input space of a
generalized adjoint system. Now, consider a causal input-output system (Y; F; U). A
truncated system Ft : U0 ! Y0 may be de�ned for each t 2 <: By concatenating a B 2 B with
F , another causal input-output system is de�ned: A = BF . In fact, a set of causal
input-output systems A = f(Z;A;U)g is de�ned by concatenating every B 2 B with F . The
system trajectories t! At of A may also be considered as time functions. A generalized
adjoint system is de�ned as the mapping from the set of time functions B to the set of time
functions A. Denote an input space of time functions Y a = f(Z;B; Y )g and an output space
of time functions Ua = f(Z;A;U)g. Given an input-output system (Y; F; U), its generalized
adjoint is F a : Y a ! Ua de�ned by F a(B) = A = BF . The generalized adjoint system is
(Ua; F a; Y a). Consider a set of causal input-output systems F = f(Y; F; U)g. A generalized
adjoint map with domain F and range Fa is de�ned by �(F ) = F a for all F 2 F .

1-1
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2 PRELIMINARIES

This chapter presents a workable de�nition of an input-output system. An input-output
system is herein denoted (Y; F; U) where F is a mapping from an input space U to an output
space Y , and where U and Y are translation-invariant spaces of vector-valued time functions.
The vector values of these time functions typically are <N ; N = 1; 2; � � � , but only need to be
Banach spaces. Other spaces and mappings related to (Y; F; U) will be introduced, but U and
Y with the qualifying a¢ xes they carry always refer to input and output spaces. Mappings
from various input spaces to output spaces are denoted F , again with qualifying a¢ xes.

Among the properties discussed are boundedness and continuity; therefore, a topology
with metric on the sets (�spaces�) involved, including the spaces of mappings must be
provided. For convenience and because it is appropriate to deal with linear spaces, or subsets
thereof, we choose to do this by introducing norms (or semi-norms) on these linear spaces. Of
course, the introduction of particular norms is arbitrary, but there are considerations to take
into account. For instance, it is desirable: (1) to have generality where possible (i.e., to deal
with classes of norms rather than speci�c ones), (2) to use, or permit the use of, norms that
are readily calculable, and (3) to use, or permit the use of, norms that yield a satisfactory
interpretation in physical problems (an admittedly vague statement). From these
considerations we are led �rst to de�ne classes of norms and normed linear spaces to be used
in specifying input and output spaces for systems. These classes are referred to as Fitted
Families (FFs) of normed linear spaces. Roughly speaking, �tted families work like Lp norms
on time functions with the additional feature where a time weighting can be incorporated so
the distant past of an input or output time function may be de-emphasized.1 This feature is
not as important in this report as it is in [11] or [13]. The notation kus;tks;t indicates the
norm; e.g., a weighted Lp norm, of the input u over the interval of time (s; t]. Us;t is the space
of inputs over the same interval. FFs were initially described in [6]. Additional statements
motivating the use of �tted families are in [9].

De�nition 1 ([6]) Let L = L(<; E) be a linear space of time functions from < into a Banach
space E such that any translate of a function in L is also a function in L. Let
N = fk�ks;t ;�1 < s < t <1g be a family of seminorms on L satisfying the
following conditions:
(1) For f1; f2 2 L, if f1(�) = f2(�) for s < � � t then kf1 � f2ks;t = 0.
(2) Let L� denote shift to the left by � . For all f 2 L, kL�fks��;t�� = kfks;t.
(3) Let r < s < t. Then for all f 2 L, kfks;t � kfkr;t.
(4) Let r < s < t. Then for all f 2 L, kfkr;t � kfkr;s + kfks;t.
(5) There exists 0 < � � 1 and K � 1 such that if 0 < t� r � � and r < s < t, then for

all f 2 L, kfkr;s � Kkfkr;t.
The pair (L;N ) is called an FF of seminorms on L. The normed linear space formed from
equivalence classes of functions in L with norm k�ks;t is denoted Hs;t. The elements of Hs;t
are the equivalence classes determined by: f � g, f; g 2 L if and only if kf � gks;t = 0. They
are denoted us;t, ys;t, etc., i.e., the equivalence classes us;t, ys;t represent inputs and outputs
respectively. The set fHs;tg, �1 < s < t <1, is the FF of normed linear spaces
given by (L;N ).

1Desoer and Vidyasagar discuss systems theory with Lp norms, [1].

2-1
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A fairly wide class of examples of FFs is given by weighted Lp-spaces. For 1 � p <1, let
w be a �xed nonnegative, nonincreasing Lebesgue measurable real-valued function and let
L = L(<;<N ) be the set of N -vector-valued functions on < that are p-integrable Lebesgue on
�nite intervals. Then, for f 2 L the seminorms

kfks;t = (
Z t

s
kf(�)kpw(t� �)d�)1=p (2-1)

satisfy Conditions (1),� � � ,(5) of De�nition 1. For p =1 let L be the set of essentially
bounded functions. When � = +1 and K = 1; (L;N ) is a standard FF of seminorms. As
time weighting was not essential to its purpose, standard FFs were used in [9].

We need to de�ne another FF of seminorms. For f 2 L, put kfks;t �= sups<��t kfks;� .
WithM indicating this new set of norms, (L;M) is indeed an FF of seminorms, [5].

An FF (L;N ) and fHs;tg, �1 < s < t <1, can be augmented to include k�k�1;t by
taking the limit s! �1, since by (3) of De�nition 1 kfks;t is monotone nondecreasing as
s! �1 with t �xed. Let L0 = ff 2 Lj lims!�1 kfks;t <1; t 2 <g. For f 2 L0, de�ne

kfkt = kfk�1;t
�
= lim
s!�1

kfks;t : (2-2)

With the meaning of (L;N ) thus extended, k�ks;t is de�ned for �1 � s < t <1. The
left-expanded FF of seminorms is thereby de�ned and is denoted (L0;N ). It still satis�es all
the Conditions (1); � � � ; (5).
De�ne L00 to be the subset of L0 such that for f 2 L00 supt kfkt <1. Note that L00 is a

translation invariant linear space. For f 2 L00, de�ne

kfks;1
�
= sup

t>s
kfks;t ; �1 � s : (2-3)

It may be readily veri�ed that if (L;N ) is an FF for indices satisfying �1 < s < t <1 then,
with de�nitions given by (2-2) and (2-3), (L00;N ) is an FF for indices satisfying
�1 � s < t <1 and satis�es conditions 1, 2, 3, and 5 of De�nition 1 for indices
�1 � s < t � 1. (For standard FFs, condition 4 holds for both cases.)
f(L00;N ); k�ks;t ; �1 � s < t � 1g is called the expanded family of seminorms determined
by (L;N ). Note that (L00;M) similarly de�ned is an FF for �1 � s < t � 1.
For f 2 L00, we put

kfk �= sup
t2<

kfkt = kfk�1;1 : (2-4)

The normed linear space consisting of equivalence classes of functions in L00 with the norm
(2-4) is called the bounding space H for the family fHs;tg.
The extended space He for the family fHs;tg is the set of all equivalence classes of

functions f in L0 (f � g i¤ kf � gk = 0) for which kfks <1 for all s. It does not have a
norm and, indeed, is given no topology. This de�nition agrees with the notion of extended
space commonly used in the control literature.
It is possible that an FF (L;N ) has a vacuous expansion in the sense that L00 is the empty

set. An obvious example of this is given when L is the set of all constant real valued functions
on < and N is the set of L1-norms on �nite intervals. To prevent this from happening and to
further prevent the bounding space H from being too small (in a sense to be made explicit
below), we can require that an FF be �full,�as indicated in the following de�nition.

2-2
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De�nition 2 The FF (L;N ) is full if each equivalence class us;t 2 Hs;t, �1 < s < t <1,
has a representing function belonging to L00.

When this de�nition is satis�ed, then for all pairs (s; t), �1 < s < t <1 there is a 1:1
correspondence between the normed linear space Hs;t determined by (L;N ) and the normed
linear space H 0

s;t determined by (L00;N ), which preserves the normed linear space structure.
The correspondence is given by us;t $ u0s;t, us;t 2 Hs;t, u0s;t 2 H 0

s;t if and only if us;t and u
0
s;t

have a common representing function f 2 L00. Thus, if (L;N ) is full, we need not distinguish
between Hs;t and H 0

s;t. Henceforth, every FF mentioned is assumed to be full. The FFs
formed with Lp spaces as described above are full.

To emphasize the relations among the equivalence classes, suppose the function f 2 L00
determines the equivalence classes u 2 H, ut 2 Ht, ut 2 Ht and us;t 2 Hs;t. Since

kf � gks;t � kf � gkt � kf � gk
t � kf � gk ,

the equivalence class u considered as a set of functions is entirely contained in the equivalence
class ut considered as a set of functions, and similarly ut � ut and ut � us;t; also u � ut;1.
Thus, for example, given t, u determines ut and ut;1. Therefore, if f determines u and
�1 � s < t � 1 it is meaningful, for example, to write kfks;t, kuks;t,

ut
s;t
, kus;1ks;t,

kutks;t, kus;tks;t, and they are all equal. Let �1 � r < s < t � 1. Then, since kfks;t � kfkr;t
for f 2 L00, the partitioning of L00 into equivalence classes by k�kr;t results in a �ner partition
than that given by k�ks;t. That is, letting f determine u 2 U , we have u � ur;t � us;t.

It is sometimes necessary to consider an arbitrary past input concatenated with an
arbitrary future input, i.e., to �splice�two inputs.

De�nition 3 ([6]) For �1 � r < s < t <1, and h, g 2 L, the splice of h and g over (r; t]
at s is de�ned and equals f if

f(�) =

�
h(�); r < � � s
g(�); s < � � t

belongs to L. It is denoted fr;t = hr;s+! gs;t. For �1 � r < s <1, the splice of h and g over
(r;1] at s equals f if

f(�) =

�
h(�); r < � � s
g(�); s < �

belongs to L. It is denoted fr;1 = hr;s+! gs;1.

If ur;s 2 Hr;s, vs;t 2 Hs;t are determined by functions h and g respectively, and hr;s+! gs;t
exists, then for an FF, the splice of u and v (or ur;s and vs;t) over (r; t] at s is de�ned to be
the element wr;t 2 Hr;t determined by hr;s+! gs;t; we write wr;t = ur;s+! vs;t. For t =1 we
write wr;1 = ur;s+! vs;1. These are not meaningful until it is proved that the splice is
independent of the particular functions h and g representing the equivalence classes ur;s and
vs;t. However, this proof follows easily from De�nition 1.
Any input space U is herein taken to be either the bounding space H of an FF fHs;tg that

permits splicing or a translation-invariant subset of H. The extended space He can appear in
an auxiliary role. We write Us;t, �1 � s < t � 1, to denote the set (�space�) of equivalence
classes of functions belonging to L00 as determined by k�ks;t. If U = H, then Us;t is the
normed linear space Hs;t; if U is a subset of H, Us;t is a space only in the sense that it is a
subset of Hs;t. We call any Us;t a truncated input space and write Ut for U�1;t.

2-3
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The requirement that H permits splicing means that, if U = H, future inputs at any t can
be arbitrary, with no regard to the past. Unfortunately, spaces of functions everywhere
continuous on < do not qualify, but this appears to be a minor drawback. It is sometimes
desired that U be a translation-invariant bounded (or even totally bounded) subset of H; we
always assume U contains the zero function. When U is a proper subset of H, a splice of two
elements in U does not necessarily belong to U . However, we require that for all u 2 U , both
ut+! 0t;1 and 0t+! ut;1 belong to U .
The output space Y is taken to be the bounding space, here denoted K, of an FF of

normed linear spaces fKs;tg, or occasionally the corresponding extended space Ke. In general,
the families fHs;tg and fKs;tg need not be the same. The notations for output spaces are
analogous to those for input spaces. The comments about equivalence classes are valid for the
ys;t 2 Ks;t.

A mapping F : U ! Y is called a global input-output mapping (or usually just an
input-output mapping).

De�nition 4 Let (Y; F; U) be an input-output system. F is a causal mapping and (Y; F; U) is
a causal system if and only if for all t and for all u; v 2 U such that ku� vkt = 0 it follows
that kF (u)� F (v)kt = 0.

If F satis�es this de�nition it determines a mapping from Ut into Yt, denoted eFt, that
satis�es

 eFtut � (Fu)t
t
= 0. We call eFt a truncated input-output mapping and de�ne the

centered truncated input-output mapping Ft : U0 ! Y0 by Ft(u0)
�
= Lt eFtRt(u0), where

Rt
�
= L�t is the right-shift by t. We assume that all systems in this report are causal. If F

satis�es this de�nition, it is causal in the usual sense. However, since causality is de�ned in
terms of FFs, systems which �look like�causal systems may not be. Memory can
a¤ect causality.

De�nition 5 Consider a left-expanded FF fHs;tg;�1 � s < t <1. The family fHs;tg and
the norms k�kt are said to be �nite memory with memory length M if there exists 0 < M <1
such that kfkt = kfkt�M;t for all f 2 L0, t 2 <.

We see that if w in (2-1) has �nite support, i.e., w(t) = 0 for t �M , the weighted Lp
normed linear spaces are examples of �nite memory spaces with memory length M . Finite
memory may cause a system that is causal in the usual sense to not be causal according to
De�nition 4 because of the nature of the FF de�ned on the input space rather than the nature
of the system itself. This does not happen for any FF where kukt = 0 implies kuks = 0 for all
s � t �the usual case.
The next step in setting up mathematical structure is to specify norms to be used for

input-output mappings eFt and Ft. Although Lipschitz norms might seem at �rst to be the
obvious choice, we much prefer, for reasons mentioned below, to use what we call N�power
norms, introduced in [7] (see also [10]). The N�power norms, denoted [] � [](N), are de�ned as
follows. Let � be a mapping from a normed linear space X into a normed linear space Y . For
any nonnegative integer N , a norm for � is given by

[]�[](N)
�
= sup
x2X

k�(x)k
1 + kxkN

(2-5)
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when the right side exists. (We omit the subscript (N) when possible). We say � is bounded
(in N�power norm) if []�[](N) <1. If � is bounded, it carries bounded sets into bounded
sets by the inequality

k�(x)k � []�[](N) � (1 + kxkN ):

However, boundedness of � does not in general imply continuity, nor vice versa. Other
properties of these norms are given in the appendix of [9] and in Appendix A of [10].
Although [9] uses the standard FFs, its appendix also applies to FFs in general. There is also
a comparison of N�power norms and Lipschitz norms in these appendices. We have chosen to
use N�power norms rather than Lipschitz norms because they are less restrictive and they are
not as in�uenced by the �ne structure of a mapping. This last property has relative
importance when one is dealing with an approximate system representation, see [3], page 785.
Using (2-5) on the truncated system mapping, we have

[]Ft[](N) = sup
u0

kFt (u0)k0
1 + ku0kN0

= sup
ut

 eFt (ut)
t

1 + kutkNt
= [] eFt[](N) : (2-6)

The norm for the global input-output mapping may be de�ned by

[]F []� = sup
u

kF (u)k
1 + kukN

: (2-7)

However, in this report, input-output systems are themselves used as inputs to the generalized
adjoint systems. Therefore, the norm for the global input-output mapping should be similar
to the norm for an input. In this report, the global input-output mapping is de�ned by

[]F [] = sup
t
[]Ft[]0

�
= sup

t
[]Ft[]�1;0 ; (2-8)

[10]. There is further elaboration about two global system norms (2-7) and (2-8) in
the appendix.
The causal bounded input-output mappings are denoted by DN (U; Y ). The following

lemma (a special case of Lemma A.1 in [10]) gives conditions so DN (U; Y ) is a Banach space.

Lemma 6 ([10]) Let Y�b;0 and Y be Banach spaces where 0 � b � 1. Then DN (U0; Y�b;0) is
a Banach space with norm [] � []�b;0 and DN (U; Y ) is a Banach space with norm [] � [].

De�nition 7 ([10]) An input-output system (Y; F; U), F 2 DN (U; Y ) is compatibly
continuous if the truncated maps Ft are equicontinuous.

Compatible continuity is stronger than continuity (it implies continuity). However, for a
linear system with norm de�ned by (2-8), compatible continuity is equivalent to boundedness.
Denote the set of causal bounded, compatibly continuous input-output systems by CN (U; Y ).
It may be shown that if � = +1, 0 2 U , and U is closed with respect to splicing, compatible
continuity is equivalent to continuity [10]. These results are derived in the appendix.
Throughout this report, whenever there is reference to a system (Y; F; U), the following

three hypotheses are in e¤ect unless otherwise speci�cally noted:

(A) The input space U is either the bounding space H of an FF of normed linear spaces that
permits splicing or a shift-invariant subset of such an A. If U is a proper subset of H,

2-5



NSWCDD/TR-12/79

we require that it contain 0, but also that u 2 U implies both ut+! 0t;1 and 0t+! ut;1
belong to U .

(B) The output space Y is the bounding space K of an FF of normed linear spaces.

(C) The global system operator F satis�es De�nition 4 (causality) with respect to the given
H and K.

The next hypothesis will often be needed but will not be in e¤ect unless stated explicitly.

(D) The operators Ft : U0 ! Y0 are uniformly bounded in N -power norm for some �xed
positive integer N by a constant C for all t 2 <, and are an equicontinuous family of
uniformly continuous mappings.

Hypothesis (D) implies that the global system operator is bounded with bound C and
uniformly continuous (see Lemmas 4 and 5 of [9]2). Other properties resulting from
Hypothesis (D) are given in [9] and [10].

2Or, F 2 CN (U; Y ) and is uniformly continuous. The proofs given in [9] were intended for a standard FF;
however, such proofs usually hold for FFs in general if Condition 5 of De�nition 1 is not used.
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3 SPACES OF TIME FUNCTIONS CONSISTING OF INPUT-OUTPUT
SYSTEMS

The input space of time functions for a generalized adjoint system is discussed in this
chapter. The time functions in this space are constructed from normalized time truncated
system trajectories. Let Z and Z0 be Banach spaces. Then, using Lemma 6, CN (Y; Z) and
CN (Y0; Z0) are Banach spaces. Let B = f(Z;B; Y )g be a Banach subspace of CN (Y; Z). A
truncated system Bt : Y0 ! Z0 is induced by each t 2 <. (The systems in B are causal.)
Therefore, the system trajectory t! Bt may be considered as a time function from < to
CN (Y0; Z0). A linear space of time functions L(<; EY a), where EY a = CN (Y0; Z0), consisting of
the time functions t! Bt for all B 2 B may be de�ned by using the addition and scalar
multiplication of input-output systems in CN (Y; Z). Consider the time function t! Bt in the
space L(<; EY a). The left translate by T is t! Bt+T . This de�nes an input-output system
B0 = LTBRT . Denote this translation by L�T . Then L

�
TB = B

0 = LTBRT . It is assumed that
B is closed with respect to translations.
The splice (De�nition 3) of B1; B2 2 B as time functions at T 2 < is the time function

�(t) 2 L(<; EY a) given by

�(t) =

�
B1t for t � T
B2t for t > T

: (3-1)

The splice of B1; B2 will be permitted only if there exists B 2 B such that �(t) = Bt for all
t 2 <. A condition, which serves as a consistency condition, that ensures the splice of
B1; B2 2 CN (Y; Z) at time T is permitted isB2(y)�B1(y)

T
= 0 (3-2)

for all y 2 Y: The splice of B1; B2 at time T; if it is permitted, i.e., (3-2) is satis�ed, gives an
input-output system B 2 CN (Y; Z) which is de�ned by

B(y) = ((B1)T+! B2T;1)(y)
�
= (B1(y))T+! (B2(y))T;1 . (3-3)

Note that even if B1 and B2 are time invariant, there is little chance that (B1)T+! B2T;1 will
be time invariant.
Next, an FF of seminorms will be de�ned on B. Since all B 2 B are bounded in CN (Y; Z);

a seminorm [] � []s;t may be de�ned on B by

[]B[]s;t
�
= sup
y2Y

kB(y)ks;t
1 + kykNt

(3-4)

where �1 < s < t < +1. In this report, N � 1; the case N = 0 is considered in [10]. The
following proposition gives conditions for an FF of seminorms to be de�ned on B.

Proposition 8 If splicing is admissible in Y and �Y = +1, KY = 1 (the variables � and K
have been de�ned in De�nition 1 and the subscripts will be used to identify them with a

particular space), then N 1 �= f[] � []s;t;�1 < s < t <1g is an FF of seminorms de�ned on the
Banach space of causal input-output systems B= f(Z;B; Y )g viewed as time functions.

Proof: Consider properties (1) through (5), which describe an FF of seminorms
(see De�nition 1).
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(1) Let B1; B2 be such that B1� = B
2
� for s < � � t, then

[]B1 �B2[]s;t = sup
y2Y

B1(y)�B2(y)
s;t

1 + kykNt
= 0 :

(2) Let T 2 < :

[]L�TB[]s�T;t�T = sup
y2Y

kLTBRT (y)ks�T;t�T
1 + kykNt�T

= sup
y2Y

kBRT (y)ks;t
1 + kRT ykNt

= []B[]s;t :

(3) Let r < s < t :

[]B[]s;t = sup
y2Y

kB(y)ks;t
1 + kykNt

� sup
y2Y

kB(y)kr;t
1 + kykNt

= []B[]r;t :

(4) Let r < s < t : Since �Y = +1; KY = 1;

[]B[]r;t = sup
y2Y

kB(y)kr;t
1 + kykNt

� sup
y2Y

kB(y)kr;s
1 + kykNt

+ sup
y2Y

kB(y)ks;t
1 + kykNt

� sup
y2Y

kB(y)kr;s
1 + kykNs

� sup
y2Y

1 + kykNs
1 + kykNt

+ []B[]s;t

� []B[]r;s + []B[]s;t :

(5) Let r < s < t and t� r < �Z :

[]B[]r;s = sup
y2Y

kB(y)kr;s
1 + kykNs

= sup
ys+!0s;t2Yt

kB(ys+! 0s;t)kr;s
1 + kys+! 0s;tkNs

� KZ sup
ys+!0s;t2Yt

kB(ys+! 0s;t)kr;t
1 + kys+! 0s;tkNt

�
1 + kys+! 0s;tkNt
1 + kys+! 0s;tkNs

� KZ sup
yt2Yt

kB(yt)kr;t
1 + kytkNt

� sup
ys+!0s;t2Yt

1 + kys+! 0s;tkNt
1 + kys+! 0s;tkNs

� KZ []B[]r;t :

Hence, �Y a = �Z and KY a = KZ : �
The seminorms [] � []t and [] � [] may be de�ned from [] � []s;t as indicated in Chapter 2.
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4 A GENERALIZED ADJOINT SYSTEM

The generalized adjoint system will be de�ned and some of its properties investigated. Let
(Y; F; U) be a causal, possibly time-varying input-output system. Assume Y and Y0 are
Banach spaces so that, as a consequence of Lemma 6, CN (U; Y ) and CN (U0; Y0) are Banach
spaces with N � 1 (this will be needed in Chapter 5, where the generalized adjoint map and
its invertibility are considered). (The case N = 0 is considered in [10].) Let B = f(Z;B; Y g)
be a translation invariant closed linear subspace of causal, bounded input-output systems
de�ned on the output space of F . Furthermore, let B be an input space of time functions as
described in the previous chapter with N = 1, i.e., B 2 C1(Y; Z) for all B 2 B. By
concatenating an input-output system B 2 B to F , a causal input-output system A = BF is
de�ned. Note that A is an element of CN (U;Z) where N is the same integer as is used for
(Y; F; U). Let A=CN (U;Z); then B is the domain and A is the counter domain of the
generalized adjoint system.
Since A and B are considered as spaces of time functions, we will need that they be FFs of

normed linear spaces as described by Proposition 8. To verify property (4) of the FFs, it was
required in Proposition 8 that �U = +1; KU = 1 and �Y = +1, KY = 1: (For bounded
range systems, i.e., (Y; F; U) 2 C0(U; Y ), this requirement is not necessary; see [10]). However,
property (4) is not used in the subsequent text; therefore, we relax these conditions.
The above conditions are in force throughout this report (unless otherwise speci�cally

stated). In summary they are:

1. F 2 CN (U; Y ) and Y0 and Y are Banach spaces, N � 1 (N = 0 in [10]).3

2. B 2 C1(Y; Z) for all B 2 B and B is a closed, linear subspace of C1(Y; Z) and Z0 and Z
are Banach spaces.

3. A = CN (U;Z):

4. A and B are translation invariant.

A generalized adjoint system is de�ned as follows:

De�nition 9 A generalized adjoint system (Ua; F a; Y a) of a causal input-output system
(Y; F; U) has domain Y a = B and counter domain Ua = A with F a de�ned by F a : Y a ! Ua;
F a(B) = A = BF .

Proposition 10 gives some properties of generalized adjoint systems.

Proposition 10 The generalized adjoint system F a of a causal input-output system F is
linear and memoryless (hence, causal). Also, F a is time invariant if F is time invariant.

Proof: Linearity: Given B1; B2 2 B and scalars �; �

F a(�B1 + �B2) = (�B1 + �B2)F

3Hypothesis (D) provides for this in terms of conditions on the truncated systems. As stated in [9], it is better
to have hypotheses in terms of the family fFtg rather than F because the mathematical description of a system
is usually in terms of Ft.
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= (�B1)F + (�B2)F = �(B1F ) + �(B2F ) = �F a(B1) + �F a(B2):

Memoryless: Let B1; B2 2 B be such that [] B1 �B2[]s;t = 0 for �1 < s < t <1 then,

[]F a(B1)� F a(B2)[]s;t = sup
u

B1F (u)�B2F (u)
s;t

1 + kukNt

� sup
u

(B1 �B2)(Fu)
s;t

1 + kF (u)kt
� 1 + kF (u)kt
1 + kukNt

� []B1 �B2[]s;t � (1 + []F []t) = 0:

Hence, the system F a is a memoryless system.
Time Invariance: Assume F is time invariant:

L�s(F
a(R�sB)) = L

�
s(F

a(RsBLs))

= LsRsBLsFRs = BLsFRs = BF = F
a(B):

Hence, the system F a is a time invariant system. �
Since F a is causal, a truncated adjoint system eF at : Y at ! Uat may be de�ned by

eF at (Bt) �= (F aB)t = (BF )t = BtFt
where Bt 2 Bt and t 2 <: The normalized truncated adjoint system F ta : Y

t
0 ! Ua0 is de�ned by

F at (B0)
�
= L�t eF at (R�tB0) = L�tR�tB0Ft = B0Ft:

Since F at is linear (shown similarly as for F
a in Proposition 10), the usual linear norm is used

for F at and []F
a[] = supt[]F

a
t []0, (see 2-8).

Proposition 11 For F 2 CN (U; Y ); F a and F at are bounded.

Proof: F at is uniformly continuous: Let B
1
0 ; B

2
0 2 B, then

[]F at (B
1
0)� F at (B20)[]0 = []B10Ft �B20Ft[]0

= [](B10 �B20)Ft[]0 = sup
u02U0

(B10 �B20)Ft(u0)0
1 + ku0kN0

= sup
u02U0

(B10 �B20)Ft(u0)0
1 + kFt(u0)k0

� 1 + kFt(u0)k0
1 + ku0kN0

� []B10 �B20 []0 � (1 + []Ft[]0) � []B10 �B20 []0 � (1 + []F []) . (4-1)

Equation (4-1) shows that F at are equicontinuous; hence, F
a is compatibly continuous

(De�nition 7) and F a is bounded (see Lemma A-6). �
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5 A GENERALIZED ADJOINT MAP

Consider the Banach space of causal, bounded, compatibly continuous input-output
systems F = f(Y; F; U)g � CN (U; Y ), all of which have the same input space U and the same
output space Y . Fix an input space of causal input-output systems B = f(Z;B; Y )g and
assume the hypotheses listed in Chapter 4 hold. De�ne an adjoint map � with domain F by

�(F ) = F a. Let the range of � be denoted by Fa �= �(F): All adjoint systems F a 2 Fa will
have common domain Y a and common counter domain Ua: Note that � is dependent on B;
but is well de�ned when B is �xed. Let the norm on � be given by

[]�[]
�
= sup
F2F

[]�(F )[]

1 + []F []
.

First, we show that � is bounded and translation preserving. Recall that since F a is linear
and []F a[] = supt[]F

a
t []0 = supt;B0 []F

a
t (B0)[]0=[]B0[]0:

Proposition 12 []�[] � 1:

Proof:

[]�[] = sup
F

[]�(F )[]

1 + []F []
= sup

F

[]F a[]

1 + []F []

= sup
F

sup
t
sup
B0

[]F at (B0)[]0
[]B0[]0

1 + []F []
= sup

F

sup
t
sup
B0

[]B0Ft[]0
[]B0[]0

1 + []F []

� sup
F

sup
t
sup
B0

(1 + []Ft[]0) � []B0[]0
[]B0[]0

1 + []F []
= 1 : �

Proposition 13 � preserves translation. (Note that the left-translate of F a by T is
L�TF

aR�T ).

Proof: For B 2 Y a
�(L�TF )B = �(LTFRT )B

= (LTFRT )
aB = BLTFRT = LTRTBLTFRT

= L�T (RTBLTF ) = L
�
T (F

a(RTBLT ))

= L�T (F
a(R�TB)) = (L

�
T�(F )R

�
T )B ;

hence, � preserves translation. �
A su¢ cient condition for � to be one to one is: For all distinct y1; y2 2 Y , there exists

B 2 B such that B(y1) 6= B(y2). (Other su¢ cient conditions are given later.) Also, it may be
seen that if all B 2 Y a are linear, then � is linear.
The Lipschitz norm of � is

[]�[]Lip = sup
F 1;F 22F

[]�(F 1)� �(F 2)[]
[]F 1 � F 2[] : (5-1)
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Lemma 14 If in addition to the aforementioned hypotheses all B 2 B are Lipschitz
continuous, � is continuous.

Proof: We have:
[]�(F 1)� �(F 2)[] = []F 1a � F 2a[]

sup
t

sup
B02Y a0

[](F 1at � F 2at )B0[]0
[]B0[]0

= sup
t
sup
B0

[]B0F
1
t �B0F 2t []0
[]B0[]0

= sup
t;B0

sup
u0

(B0F 1t )(u0)� (B0F 2t )(u0)0
1 + ku0kN0
[]B0[]0

� sup
t;B0

[]B0[]0 � sup
u0

F 1t (u0)� F 2t (u0)0
1 + ku0kN0

[]B0[]0

= []F 1 � F 2[] ;

which is su¢ cient for the continuity of � (and gives []�[]Lip = 1). �
To close out this chapter, we consider two propositions under which the quotient in (5-1) is

bounded below and these will lead to the invertibility of � and the continuity of ��1. For the
�rst proposition, we essentially show � is invertible if there is a B 2 B that is invertible.

Proposition 15 In addition to the hypotheses of this chapter, assume there exists causal
BL 2 B such that 8y1; y2 2 Y ,

BL0 (y10 � y20)0 � my10 � y200, where 0 < m <1 (say BL is
Lipschitz bounded below). Then []�[]Lip in (5-1) is bounded below.

Proof: We have,

[]�(F 1)� �(F 2)[] = []F 1a � F 2a[] = sup
t

sup
B02Y a0

[](F 1at � F 2at )B0[]0
[]B0[]0

� sup
t

[](F 1at � F 2at )BL0 []0
[]BL0 []0

= sup
t

[]BL0 (F
1
t � F 2t )[]0
[]BL0 []0

= sup
t

sup
u0

BL0 (F 1t � F 2t )(u0)0
1 + ku0kN0
[]BL0 []0

�
sup
t
�m � sup

u0

(F 1t � F 2t )(u0)0
1 + ku0kN0

[]BL[]
=
m � []F 1 � F 2[]

[]BL[]
: (5-2)

Hence, []�[]Lip � m=[]BL[]. �
The next lemma describes an input-output system B : Y ! Z, which has a specialized

property. A system is presented that has norm one and, for a speci�ed input, has output
equal to the norm of that input. The system is causal, linear, and bounded. The construction
uses the Hahn-Banach theorem. Specify a y� 2 Y and z� 2 Z. In general z� is an equivalence
class of time functions. Pick a time function ��, which is an element of z�, that is, �� 2 [z�].
For each t 2 <, there exists a linear functional f t : Yt ! < such that for all t []f t[] = 1 and
such that f t(y�t ) = ky�t kt (see the Hahn-Banach theorem, [2]). De�ne an input-output system
(Z;B�; Y ) by

(B�(y))(t)
�
= f t(yt)�

�(t) : (5-3)

Note that the output of B�, as described by (5-3), is a time function; however, the time
function, in turn, speci�es an equivalence class of time functions that, in general, is an
element of Z.
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Lemma 16 The input-output system B� de�ned by (5-3) is a linear system. If Y has the
property that kykt = 0 implies kyks = 0 for all y 2 Y , t and s < t, (e.g., �Y = +1 and
KY = 1) it is causal, and if the �sup�norm (L1) norm is used on Z, it is a bounded
input-output system.

Proof: Linearity: Let y1; y2 2 Y , k1; k2 2 <. Then,

(B�(k1y
1 + k2y

2))(t) = f t((k1y
1 + k2y

2)t)�
�(t)

= (k1f
t(y1t ) + k2f

t(y2t ))�
�(t) = k1B

�(y1t )(t) + k2B
�(y2t )(t) :

Therefore,
B�(k1y

1 + k2y
2) = k1B

�(y1) + k2B
�(y2) :

Causality: Take y1; y2 2 Y such that
y1 � y2

t
= 0. Let �1 = B�(y1) and �2 = B�(y2). We

then have that
y1 � y2

s
= 0 for all s � t. This implies �1(s) = �2(s) for all s � t, and by

property (1) of the FFs (see De�nition 1),
[�1]� [�2]

t
= 0, where the square brackets

indicate the element of Z speci�ed by the time functions; hence, B� is causal.
Boundedness: The linear operator norm is used for B�.

[]B�[] = sup
t
[]B�t [] = sup

t
sup
y0

kB�t (y0)k0
ky0k0

= sup
y0
sup
t

f t(y0)��(t)
ky0k0

� sup
y0

supt
��f t(y0)�� supt k��(t)k

ky0k0

� sup
y0

supt[]f
t[] ky0k0 k��k
ky0k0

� sup
y0

ky0k0 k��k
ky0k0

= k��k :

Hence, B� is bounded. �
For the second proposition, we show the quotient in (5-1) is bounded below if elements of

the form (5-3) are available in B.

Proposition 17 Under the conditions that there exists causal bounded linear B� 2 B of the
kind given by (5-3) (including that the �sup�norm is used in Z) then for all F 1; F 2, we have
[]�(F 1)� �(F 2)[] � []F 1 � F 2[].

Proof: Consider

[]�(F 1)� �(F 2)[] = []F 1a � F 2a[] = sup
t

sup
B02Y a0

[](F 1at � F 2at )B0[]0
[]B0[]0

= sup
t

sup
B02Y a0

[]B0(F
1
t � F 2t )[]0
[]B0[]0

� sup
t

[]B�t (F
1
t � F 2t )[]0
[]B�t []0

= sup
t

sup
u0

B�t (F 1t � F 2t )(u0)0
1 + ku0kN0
[]B�t []0

for any particular B� 2 B. Let B� be of the form given in in Lemma (16),

B�(y)(t)
�
= f t(yt) � ��(t) with []f t[] = 1 and k��(t)k = 1 for all t. Substitution in the previous
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equation gives

= sup
t

sup
u0

f t((F 1t � F 2t )(u0)) � ��(t)
1 + ku0kN0

sup
y0

f t(y0) � ��(t)
ky0k0

= sup
t

sup
u0

��f t((F 1t � F 2t )(u0))��
1 + ku0kN0

sup
y0

��f t(y0)��
ky0k0

� sup
t

sup
u0

��f t((F 1t � F 2t )(u0))��
1 + ku0kN0

sup
y0

[]f t[] � ky0k0
ky0k0

= sup
t
sup
u0

��f t((F 1t � F 2t )(u0))��
1 + ku0kN0

:

Now, for all � > 0, 9 t and � such that

[]F 1 � F 2[] � []F 1t � F
2
t []0 +

�

2
�
(F 1

t
� F 2

t
)�0

0

1 + k�0kN0
+ � :

Select (using the Hahn-Banach theorem, [2]) f t ([]f t[] = 1) such that
f t((F 1 � F 2)t�0) =

(F 1 � F 2)t�00, so for this f ,��f t((F 1t � F 2t )(�0))��
1 + k�0kN0

=

(F 1 � F 2)t�00
1 + k�0kN0

for all t. Then,

[]�(F 1)� �(F 2)[] + � �
(F 1

t
� F 2

t
)�0

0

1 + k�0kN0
+ � � []F 1 � F 2[] :

Since � is arbitrary,
[]�(F 1)� �(F 2)[] � []F 1 � F 2[]: (5-4)

�
Propositions 15 and 17 give that � is one to one. Let F 1; F 2 2 F with F 1 6= F 2, which is

equivalent to []F 1 � F 2[] > 0. Equation (5-2) or (5-4) imply []�(F 1)� �(F 2)[] > 0, which means
�(F 1) 6= �(F 2) so � is one to one. Propositions 15 and 17 also give that ��1 is uniformly
continuous. Consider the boundedness of ��1. Let F = F 1and F 2 = 0. Using these
propositions, we get

[]F []

1 + []�(F )[]
<

�
[]BL[]=m from (5� 2)

1 from (5� 4)

which are bounds for ��1.
Both of these propositions require that the domain space B contain speci�c or specialized

elements. Roughly speaking, � maps two di¤erent functions, F 1 and F 2, to two di¤erent
functions, F 1a and F 2a, if the domain B is su¢ ciently large. In this regard, the domain B may
be viewed as a space of �test inputs.�
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6 ON THE INVERTIBILITY OF THE INPUT-OUTPUT SYSTEM F IN
TERMS OF THE GENERALIZED ADJOINT INPUT-OUTPUT SYSTEM F a

The results of this chapter are divided in two sections. In the �rst section, an algebraic
analysis is presented. That is, whether F a is one to one and onto when F is and vice versa are
considered. In the second section, a functional analysis is presented. Here, we de�ne the
auxiliary map G 2 G which, as described, behaves like F and has input space Ua and output
space Y a. The causality, boundedness, and continuity of G is considered. The extent that F a

is the inverse of G is considered. This covers the invertibility of F by F a. Also, we consider
the boundedness, continuity, and invertibility of the map from F to G.

Invertibility for F and F a

First, we assume that both F and F a are invertible and �nd a relationship between the
inverses. From the de�nitions

F a(B) = A = BF : (6-1)

However, since F is invertible,
AF�1 = B ;

hence,
(F�1)aA = B : (6-2)

Substituting (6-1) into (6-2), we obtain

(F�1)aF a(B) = B : (6-3)

Substituting (6-2) into (6-1), we obtain

F a(F�1)aA = A : (6-4)

The conclusion from (6-3) and (6-4) is that (F a)�1 = (F�1)a. This is similar to Lemma 7,
page 479 in [2], for linear operators on Banach spaces.
Next we consider, in the algebraic sense, the invertibility of F a based on the invertibility of

F . Meaning, we consider whether F a is one to one and onto if F is one to one and onto.
Similar analysis for the invertibility of F based on F a is also considered.

Lemma 18 F onto implies F a is one to one.

Proof: Let B1, B2 2 Y a such that B1 6= B2, that is, B1(y) 6= B2(y) for some y 2 Y . Pick
u 2 U such that F (u) = y. This is possible since F is assumed to be onto. Then, with
A1 = F

a(B1), A2 = F a(B2),

A1(u) = [F
a(B1)](u) = B1F (u) = B1(y)

A2(u) = [F
a(B2)](u) = B2F (u) = B2(y) :

Hence, A1 6= A2 and F a is one to one. �

Lemma 19 F one to one implies F a is onto.
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Proof: Fix some A 2 Ua. For this A, consider u and z = A(u). For this u, F speci�es a
unique y 2 Y by F (u) = y (since F is one to one). Hence, a particular B is de�ned by
B(y) = z. Note that the domain of this B is not necessarily all of Y (it may be a subset of
Y ). In other words,

B(y) = A(F�1(y)) 8 y 2 Range(F ) :

This B has the property that F a(B) = A, so F a is onto. �
If F is algebraically invertible, that is, F is one to one and onto, then from Lemma 18 and

Lemma 19, we have that F a is also invertible. We consider the reverse. The following lemma
requires that A contains elements which distinguish elements of U , i.e., for u1 6= u2 there exists
A such that A(u1) 6= A(u2). The system described by (6-5) in the next section ful�lls this.

Lemma 20 Assume that A contains distinguishing A for all u1; u2 2 U , such as given by
(6-5), then F a onto implies F one to one.

Proof: Consider u1; u2 2 U such that u1 6= u2 and let A : U ! Z be such that
A(u1) 6= A(u2). Since F a is onto, there exists B 2 Y a such that F a(B) = A. Let y1 = F (u1)
and y2 = F (u2).

[F a(B)](u1) = BF (u1) = A(u1) = B(y1)

[F a(B)](u2) = BF (u2) = A(u2) = B(y2) :

Therefore, B(y1) 6= B(y2). However, this is not possible for any B unless y1 6= y2; hence, F is
one to one. �
The following lemma requires that B contains elements of the following form: Given

(Y; F; U), there is a BF 2 B such that BF (y) = 0 for all y 2 Range(F ) and BF (y) = 1 for all
y 2 Range(F )C .

Lemma 21 Assume B contains elements of the form BF mentioned above and that F a is one
to one. Then, F is onto.

Proof: Suppose F is not onto. De�ne B1 = BF and B2 = 2 �BF . Since F is not onto,
B1 6= B2. Consider, A1 = F a(B1) and A2 = F a(B2). It is seen that A1 = A2, indicating F a is
not one to one; a contradiction. This is similar to the last three lines in the proof of Lemma 7
on page 479 in [2] for linear operators on Banach spaces. [If Range(F )C always contains an
open set, allowances could be made showing this result with all B 2 Y a being continuous.] �
Lemmas 20 and 21 give the reverse results to Lemmas 18 and 19. The condition on A in

Lemma 20 and on B in Lemma 21 are a form of completeness on the range and domain of F a

respectively. Note that the two completeness conditions are imposed on the adjoint space.

On F a as the Inverse of F

In this section, the extent to which F a is the inverse of F is considered. Since the domain
and range of F are not the same as, respectively, the range and domain of F a, the purpose of
the �rst section of this chapter is to construct a new system whose domain and range are the
range and domain of F a, and that behaves like F . We add the following condition to those
indicated in Chapter 4:

5. The �sup�-norm (L1 norm) is used on Z.
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A particular A is constructed that has specialized properties. Consider a speci�c z 2 Z; z
is (in general) an equivalence class of time functions and may be denoted by [z] for emphasis.
Let � 2 [z] be a speci�ed element in [z]. For each u# 2 U , specify an A# 2 Ua by

A#(u)(t) =
ut � u#t 

t
� �(t) ; (6-5)

where t 2 <. This system may be de�ned using the truncated systems:

eA#t (ut)(t) = ut � u#t 
t
� �(t) ; (6-6)

A#t (u0)(t) =
u0 � �Ltu#�

0


0
� �(t) : (6-7)

Obviously A# is not linear. The set of all such A# is A# � A. We see that the map
 : U ! A# de�ned by (u#) = A# is one to one and onto, provided �(t) 6= 0. In fact,  is
onto by construction. To see that it is one to one, consider u# 6= u[. In this case, there exists
t such that u#t 6= u[t. Hence, eA#t (u#t )(t) = u#t � u#t 

t
� �(t) 6=

u#t � u[t
t
� �(t) = eA[t(u#t )(t).

So A# 6= A[, and  is one to one.
The causality, boundedness, and continuity of A# is considered in the next lemma.

Lemma 22 A# of the form given by (6-5) is causal, bounded, and uniformly compatibly
continuous (see De�nition 7).

Proof:
Continuity and Causality: Consider the Lipschitz norm of A#: Let M �

= supt k�(t)k,

[]A#[]Lip
�
= sup

t
[] eA#t []Lip;t = sup

t
sup
u1;u2

 eA#t (u1t )� eA#t (u2t )
tu1t � u2tt

= sup
t;u1;u2

���u1t � u#t 
t
�
u2t � u#t 

t

��� � k�(t)ku1t � u2tt � sup
t;u1;u2

u1t � u2ttu1t � u2tt �M =M :

The above, by De�nitions 4 and 7, shows that A# is causal and uniformly compatibly
continuous.

Boundedness: It is shown that A# is bounded. Refer to (2-5) and (2-8):

[]A#[]
�
= sup

t
[] eA#t []t = sup

t;u

 eA#t (ut)
t

1 + kutkNt

� sup
t;u

ut � u#t 
t

1 + kutkNt
� sup

t
k�(t)k � (1 + sup

t

u#t 
t
) � sup

t
k�(t)k

= (1 + sup
t

u#t 
t
) �M = (1 +

u#) �M ; (6-8)

for any N � 1. �
In the following paragraphs, some properties of A# are considered.
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Lemma 23 If � is a constant, i.e., �(t) = � for all t, A# is translation invariant.

Proof: As discussed in the introductory paragraph of Chapter 3, the left translate by � of

A# is L��A
# �
= L�A

#R� . Given u#; u, we have,

L��A
#(u)(t) = (L�A

#R� )(u)(t) = L� (A
#(R�u)(t))

= L� (
(R�u)t � u#t 

t
� �(t)) = L� (

ut�� � u#t 
t
� �(t))

= L� (
ut�� � u#t 

t
) � L��(t) =

ut � u#t+�
t
� �(t+ �) : (6-9)

Let u[ = Ltu#. Since U (the input space to F ) is translation invariant u[ 2 U . We have

L��A
# = A[ 2 A#

where A[ = (u[). �
We consider the e¤ect of a translation in U . As in the proof of Lemma 23, let u[ = L�u#,

then
A[(u)(t) =

ut � u[t
t
� �(t)

=
ut � (L�u#)t

t
� �(t) =

ut � u#t+�
t
� �(t) : (6-10)

Using (6-9) we get

u#
! A#

L��! (L��A
#) : (6-11)

Using (6-10) we get

u#
L�! L�u

# = u[
! A[ : (6-12)

Since (6-9) does not equal (6-10), in general, equations (6-11) and (6-12) cannot be used to
form a commutative diagram, i.e.,  does not preserve translation. However, if � = � a
constant, then (6-11) and (6-12) do form a commutative diagram. Since the sup norm is used
in Z, selecting � a constant is valid. We will designate A# as an input space and by Condition
4 listed above, it has to be translation invariant. Setting � as a constant ful�lls Condition 4;
however, we will not assume this, which gives the subsequent presentation a little more
generality.

Remark 24 A# is not closed with respect to addition, in general. In fact, for u#, u[ 2 U
and A#, A[ 2 A#;

(A# +A[)u(t) = A#u(t) +A[u(t)

= [
ut � u#t 

t
+
ut � u[t

t
] � �(t) :

The above is a causal input-output system from U to Z; however, it is not likely in A#.
Hence, A# is not shown to be closed with respect to addition.

Further properties of  are considered. We observe that  is not, in general, linear. The
next two lemmas examine the boundedness and continuity of  and �1.

Lemma 25 Let supt k�(t)k =M <1. Then map  : U ! A# is bounded and uniformly
continuous.
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Proof: Boundedness of : Lemma 22 gives that

[][]
�
= sup

u#

(u#)
1 + ku#kN

= sup
u#

[]A#[]

1 + ku#kN

� sup
u#

(1 +
u#) � supt k�(t)k
1 + ku#kN

� 2 �M :

Hence,  is bounded.
Continuity of :

[](u#)� (u[)[] = []A# �A[[] = sup
t
[] eA#t � eA[t[]t

= sup
t;u

 eA#t (ut)� eA[t(ut)
t

1 + kutkNt
= sup

t;u

ut � u#t 
t
� �(t)�

ut � u[tt � �(t)
1 + kutkNt

� sup
t

u#t � u[t
t
� sup

t
k�(t)k =

u# � u[ �M : (6-13)

Hence,  is uniformly continuous. �

Lemma 26 Let supt k�(t)k =M <1 and inft k�(t)k = m > 0. Then the map �1 : A# ! U
is bounded and continuous.

Proof: Continuity of �1:

[](u#)� (u[)[] = []A# �A[[] = sup
t
[] eA#t � eA[t[]t

� sup
t

u[t � u#t 
t
� �(t)�

u[t � u[tt � �(t)
1 +

u[tNt � sup
t

u[t � u#t 
t

1 +
u[tNt � inf

t
k�(t)k

� sup
t

u[t � u#t 
t

1 +
u[tNt �m �

u[ � u# � m

1 +
u[N : (6-14)

Using this and (6-8), we have

m �
u[ � [](0)� (u[)[] � [](0)[] + [](u[)[] �M + [](u[)[] : (6-15)

Hence, from (6-14), u[ � u# � 1 +
u[N
m

� [](u#)� (u[)[]

�
1 +

 
M + [](u[)[]

m

!N
m

� [](u#)� (u[)[] :
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Hence, �1 is continuous. Note that (6-14) also gives that

[] eA#t � eA[t[]t � u[t � u#t 
t
� m

1 +
u[N ; (6-16)

which will be needed below.
Boundedness of �1: From (6-15),

[](u#)[] +M �
u# �m :

Or
M � ([](u#)[] + 1) �

u# �m
where M = max(M; 1). Therefore, u#

1 + [](u#)[]
� M

m
: (6-17)

which gives []�1[] �M=m. This is the norm []�1[](1); however, as stated in the appendix of
[9], if M < N , []�1[](N) � 2 � []�1[](M). �
In the next lemma, we consider whether  is a monotonic function, i.e., if

u1# � u2#
then

(u1#) � (u2#). Since orthogonality is needed in the proof, in this lemma we use a
weighted L2 norm on U .
The weighted L2(s; t) space (2-1), �1 < s < t <1, with p = 2, is a Hilbert space with

inner product

hu; vis;t =
�Z t

s
u(�)v(�)w(t� �)d�

�1=2
(6-18)

when w(t) > 0 for all t. In Lemma 27, we assume the input space U is a Hilbert space with
inner product (6-18).

Lemma 27 If �(t) 6= 0 for all t and the weighted L2 norm derived from the inner product
(6-18) is used on U with w(t) > 0 for all t, then  is monotonic.

Proof: Given u#, u[, let
u#

0
<
u[

0
. De�ne a hyperplane H by

H
�
= fu 2 U j

u� u#
0
=
u� u[

0
g. H divides U0 into two regions. Region U

#
0 contains u#0

and region U [0 contains u
[
0. With this construction, u0 2 U

#
0 i¤

u� u#
0
�
u� u[

0
and

u0 2 U [0 i¤
u� u#

0
�
u� u[

0
. Thus, 00 2 U#0 . Consider the following quotients:u� u#

0

1 + kukN0
and

u� u[
0

1 + kukN0
: (6-19)

For u0 2 U#0 , the numerator of the right quotient is larger than the numerator of the left
quotient. Consider u0 2 U [0. Construct a perpendicular P from u0 to H. Denote the point in
U#0 along P equidistant to H as u0 is by u0. Consider the quotients:u� u#

0

1 + kukN0
and

u� u[
0

1 + kukN0
: (6-20)
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We have that kuk0 � kuk0 and that
u� u#

0
=
u� u[

0
. Hence, the right quotient is

larger than the left quotient. Hence, from (6-19) and (6-20)

sup
u

u� u#
0

1 + kukN0
� sup

u

u� u[
0

1 + kukN0
:

Therefore, if A# = (u#) and A[ = (u[) such that
u# < u[, then

[]A#[] = sup
t
[]A#t []t = sup

t;u

ut � u#t 
t
� k�(t)k

1 + kukNt

� sup
t;u

ut � u[tt � k�(t)k
1 + kukNt

< sup
t
[]A[t[]t = []A

[[]

and  is monotonic. �
The input and output spaces U and Y of F are not the same as the input and output

spaces Y a and Ua of F a. With this feature, F a could not be the inverse of F . As stated in the
�rst paragraph in this section of the chapter, an auxiliary system having the same input and
output spaces as the output and input spaces of F a and having similar behavior to F is
needed. To de�ne the auxiliary system, each u# 2 U is assigned to an A# 2 Ua. Select a time
function � 2 [z] 2 Z; with �(t) 6= 0; and de�ne an A# : U ! Z by (6-5). Also, for y 2
Range(F ), de�ne a B# : Y ! Z by

B#(y)(t)
�
=
yt � y#t 

t
� �(t) :

The auxiliary map G of F has domain fA#g �= A# � A (see 6-5) and is de�ned by

G(A#)(y)(t)
�
=
yt � eFt(u#t )

t
� �(t) : (6-21)

The map G is related to F in the following sense. If y# = F (u#) and A# 2 A# and B# 2 B#
are derived from u# and y# respectively as described above, then G(A#) = B#. Note that
with domain A# � A, G has range B# � B. Also note that (6-21) de�nes a unique G
for each F .
Next, we consider whether F a inverts G. For this, assume that F is one to one. Let

y# = F (u#) so that B# = G(A#). We have

F a(B#)u(t) = (B#F )u(t) = B#(Fu)(t)

=
(F (u)� y#)t

t
� �(t) =

(F (u)� F �u#�)t
t
� �(t) : (6-22)

Denote the set of input-output systems F aB of the form (6-22) by A#F . De�ne an equivalence
relation �~�for systems in A# and A#F based on null spaces, i.e., two systems are equivalent
if their null spaces are exactly the same. Since F is assumed to be one to one, using this
equivalence relation on the right hand side of (6-22) we have

�
�u� u#�

t


t
� �(t) = (A#)u(t) : (6-23)
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The systems given by (6-22) and (6-23) are the only two elements in their equivalence class.
Hence, from (6-21) and (6-23),

F a(G(A#)) � A# :4 (6-24)

The next lemma considers elementary properties of the map G.

Lemma 28 The operator G is memoryless. If supt k�(t)k =M <1 and inft k�(t)k = m > 0,
G is bounded. If, in addition, F is compatibly continuous, then G is compatibly continuous.

Proof: Memoryless: Consider A#, A[ such that []A# �A[[]s;t = 0 for all s; t 2 <. This
gives that for all u 2 U ,

A#(u)�A[(u)
s;t
= 0. From (6-5) (and since the �sup�norm is

used on Z), u� � u#� 
�
� �(�)�

u� � u[�
�
� �(�) = 0 (6-25)

for all s < � � t. Substituting u = u# in (6-25) givesu#� � u[�
�
� �(�) = 0 for all s < � � t : (6-26)

Now, for any y 2 Y we have(G(A#)�G(A[))(y)(�) = y � F (u#)
�
� �(�)�

y � F (u[)
�
� �(�)


�
F (u[)� F (u#)

�
� k�(�)k = 0 ;

for all s < � � t, from (6-26) and the causality of F . The above implies

[]G(A#)�G(A[)[]s;t = 0 ;

which indicates that G is memoryless. Therefore, one memoryless system inverts another
memoryless system. One consideration is how a linear map, F a, could be the inverse of a
nonlinear map, G. However, note the input space of G is not a linear space. In fact, it is not
closed with respect to addition (see Remark 24).
Boundedness: Under the stated condition, it is shown that G is bounded.

[]G[]
�
= sup

t
[]Gt[]t = sup

t
sup

A#2A#

[] eGt( eA#t )[]t
1 + []A#t []

N
t

= sup
A#2A#

sup
t;y

 eGt( eA#t )(yt)
t

(1 + kytkt)(1 + []A
#
t []
N
t )

� sup
A#2A#

sup
t;y

yt � eFt(u#t )
t

(1 + kytkt)(1 + []A
#
t []
N
t )
� sup

t
k�(t)k

4An alternative to (6-5) and (6-21) are A#(u)(t) = �(ut � u#t ) � �(t) and G(A#)(y)(t) = �(yt � eFt(u#t )) � �(t)
where � : Ut ! < is the delta function, that is �(ut) = 1 if ut is zero and = 0 else. This A# is bounded, but not
continuous; however, the equivalence relation in the invertibility calculation becomes an equality.
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� sup
A#2A#

sup
t;y

kytkt +
 eFt(u#t )

t

(1 + kytkt)(1 + []A
#
t []
N
t )
� sup

t
k�(t)k

�

0@1 + sup
A#2A#

sup
t

 eFt(u#t )
t

(1 + []A#t []
N
t )

1A �M: (6-27)

A lower bound for []A#t []t is needed. Consider

[]A#t []t = sup
u

 eA#t (ut)
t

1 + kutkNt
= sup

u

sup��t

u� � u#� 
�
� k�(�)k

1 + kutkNt

� sup
u

ut � u#t 
t

1 + kutkNt
� inf
��t
k�(�)k �

u#t 
t
�m : (6-28)

Substituting into (6-27) and using � = min(1;m) gives

[]G[] �

0@1 + sup
t
sup
u2U

 eFt(ut)
t

(1 + kutkNt )

1A � M
�N

=

�
1 + sup

t
[]Ft[]

�
� M
�N

= (1 + []F []) � M
�N

: (6-29)

Continuity: Finally, we show that G is compatibly continuous under the stated
conditions.

[]G(A#)�G(A[)[]t = sup
y

 eGt( eA#t )(yt)� eGt( eA[t)(yt)
t

1 + kytkNt

� sup
y

���yt � eFt(u#t )
t
�
yt � eFt(u[t)

t

���
1 + kytkNt

� sup
t
k�(t)k

� sup
y

 eFt(u#t )� eFt(u[t)
t

1 + kytkNt
�M �

 eFt(u#t )� eFt(u[t)
t
�M :

Since F is compatibly continuous, given u[ for all � > 0, there exists � > 0 such that ifu#t � u[t
t
< � then

 eFt(u#t )� eFt(u[t)
t
< �, for all t. Hence, using (6-16), G is compatibly

continuous. �
We consider the boundedness and continuity of the map � : F ! G (�(F ) = G).

Lemma 29 Let supt k�(t)k =M <1 and inft k�(t)k = m > 0. Then map � : F ! G is
bounded and continuous.

Proof: Boundedness: Consider

[]�[]
�
= sup

F

[]G[]

1 + []F []
:

6-9
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However, this is just given by (6-29) that is,

[]�[] � M

(�)N
: (6-30)

where � = min(1;m).
Continuity: Let �

�
F 1
�
= G1 and �

�
F 2
�
= G2. Consider

[]G1 �G2[] = sup
t
[]G1t �G2t []t = sup

t;A

[] eG1t ( eA#t )� eG2t ( eA#t )[]t
1 + [] eA#t []Nt

= sup
t;A;y

 eG1t ( eA#t )(yt)� eG2t ( eA#t )(yt)
t

(1 + kytkt) � (1 + [] eA#t []Nt )
� sup
t;A;y

���yt � eF 1t (u#t )
t
�
yt � eF 2t (u#t )

t

���
(1 + kytkt) � (1 + [] eA#t []Nt ) � sup

t
k�(t)k

� sup
t;A

 eF 1t (u#t )� eF 2t (u#t )
t

(1 + [] eA#t []Nt ) �M

� sup
t;u

 eF 1t (ut)� eF 2t (ut)
t

(1 + kutkNt )
� M
�N

� []F 1 � F 2[] � M
�N

;

using (6-28) �:
We consider the boundedness and continuity of the map ��1 : G ! F (��1(G) = F ).

Lemma 30 Let supt k�(t)k =M <1 and inft k�(t)k = m > 0. Then map ��1 : G ! F is
bounded. With the coarser C(2�N) topology on G, ��1 is continuous.

Proof: Boundedness: Consider

[]F [] = sup
t
[]Ft[]t = sup

t;u

 eFt(ut)
t

1 + kutkNt
= sup

t;u

 eFt(ut)
t

1 + []At[]Nt
� 1 + []At[]

N
t

1 + kutkNt

where A = (u),

� sup
t;u;y

�

yt � eFt(ut)
t
� k�(t)k

(1 + kytkt) � (1 + []At[]Nt ) �m
� sup
t;u

1 + []At[]
N
t

1 + kutkNt

� sup
t;u;y

�

 eGt( eAt)(yt)
t

(1 + kytkt) � (1 + []At[]Nt ) �m
� sup
t;u

1 + []At[]
N
t

1 + kutkNt

= sup
t;A
� [] eGt( eAt)[]t
(1 + []At[]Nt ) �m

� sup
t;u

1 + []At[]
N
t

1 + kutkNt
=
[]G[]

m
� sup
t;u

1 + []At[]
N
t

1 + kutkNt
: (6-31)
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However, using (6-8) we get

1 + []At[]
N
t

1 + kutkNt
� 1 + ((1 + kutkt) �M)N

1 + kutkNt
= c <1 : (6-32)

Using this in (6-31) we obtain

[]��1 (G) [] = []F [] � c

m
� []G[] (6-33)

and this gives that ��1 is bounded.
Continuity: Let ��1

�
G1
�
= F 1 and ��1

�
G2
�
= F 2. Consider

[]G1t �G2t []t = sup
A

[] eG1t ( eAt)� eG2t ( eAt)[]t
1 + []At[]Nt

= sup
A;y

(yt � eF 1t (ut)
t
�
yt � eF 2t (ut)

t
) � �(t)


t

(1 + kytkt) � (1 + []At[]Nt )
:

Letting yt = eF 2t (ut) in the above equation gives for all A; u
�

 eF 2t (ut)� eF 1t (ut)
t
� k�(t)k

(1 +
 eF 2t (ut)

t
) � (1 + []At[]Nt )

: (6-34)

There are two cases to consider in (6-34).

Case 1:
 eF 2t (ut) � 1. This gives that in (6-34)
�

 eF 2t (ut)� eF 1t (ut)
t
�m

(1 + kutkNt )
� (1 + kutkNt )
2 � (1 + []At[]Nt )

�

 eF 2t (ut)� eF 1t (ut)
t

(1 + kutkNt )
� m
2 � c

�

 eF 2t (ut)� eF 1t (ut)
t

(1 + kutk2�Nt )
� m
2 � c �

1

2
(6-35)

where c is the constant in (6-32).

Case 2:
 eF 2t (ut) > 1. This gives that in (6-34)

�

 eF 2t (ut)� eF 1t (ut)
t
�m

2 �
 eF 2t (ut)

t
� (1 + []At[]Nt )

�

 eF 2t (ut)� eF 1t (ut)
t

(1 + kutkNt )2
� m � (1 + kutkNt )
[]F 2t []t � 2 � (1 + []At[]Nt )

�

 eF 2t (ut)� eF 1t (ut)
t

(1 + kutk2�Nt )
� C � 1

[]F 2t []t
(6-36)
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(using (6-32)) where C is a constant. Combining (6-35) and (6-36), we get that

[]G2t �G1t [](N)t � []F 2t � F 1t [](2�N)t �min(
1

2 � c � 2 ;
C

[]F 2t []t
) :

Hence,
K �max(1; []F 2t []t) � []G2t �G1t [](N)t � []F 2t � F 1t [](2�N)t ;

for some 0 < K <1. Using (6-33) we obtain

K 0 �max(1; []G2t []t) � []G2t �G1t [](N)t � []F 2t � F 1t [](2�N)t ; (6-37)

For some 0 < K 0 <1. Equation (6-37) gives that ��1 is continuous, with the CN topology in
G and the coarser C(2�N) topology in F . From Lemma A.4 in Appendix A of [10], if F 2 CN
then F 2 C(2�N). �
Denote a functional form of the equivalence operator given in (6-23) by D. That is,

D(
F (u)� F (u#) � �(t)) �= u� u# � �(t) :

We consider the boundedness and continuity of this operator and its inverse.

Lemma 31 Let F (0) = 0 and F�1 be bounded and continuous. Let B# = G(A#) and
A# � F a(B#) as in (6-23). Then D(F a(B#)) = A# so de�ned is bounded and continuous.

Proof: Boundedness: Consider

[]D[] = sup
B#

[]A#[]

1 + []F a(B#)[]N
= sup

B#

supt;u

ut � u#t 
t
� k�(t)k

1 + kutkNt
1 + []F a(B#)[]N

� sup
t;B#

supu

ut � u#t 
t
� k�(t)k

1 + kutkNt
1 + [] eF at ( eB#t )[]Nt �M + sup

t;u#

u#t 
t
�M

1 + (m �
 eFt(u#t )

t
)N

<1 ; (6-38)

since F�1 is bounded and, referring to (6-22), we have

[] eF at ( eB#t )[]t � sup
ut

 eFt(ut)� eFt(u#t )
t

1 + kutkNt
�m �

 eFt(u#t )
t
�m

with F (0) = 0.
Continuity: Let D(F a(B#)) = A# and D(F a(B[)) = A[. Recalling (6-13),

[]A# �A[[] �
u# � u[ �M : (6-39)

Now,

[] eF at ( eB#t )� eF at ( eB[t )[]t �
 eFt(u#t )� eFt(u[t)

t

1 +
u#t N

t

�m ;
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or  eFt(u#t )� eFt(u[t)
t
� (

1 +
u#t N

t

m
) � [] eF at ( eB#t )� eF at ( eB[t )[]t

� (1 + ([]A
#
t []t=m)

N

m
) � [] eF at ( eB#t )� eF at ( eB[t )[]t

from (6-28). Taking the supremum over t on both sides givesF (u#)� F (u[) � (1 + ([]A#[]=m)N
m

) � []F a(B#)� F a(B[)[] : (6-40)

We see from (6-38) that for some C

[]A#[]

1 + []F a(B#)[]N
< C <1 :

Therefore,
[]A#[] < C � (1 + []F a(B#)[]N ) :

Substituting into (6-40) givesF (u#)� F (u[) � (1 + (C � (1 + []F a(B#)[]N )=m)N
m

) � []F a(B#)� F a(B[)[] : (6-41)

Using (6-39), (6-41) and the continuity of F�1, we conclude that D is continuous. �

Lemma 32 Let B# = G(A#) and A# � F a(B#) as in (6-23). Then D�1(A#) = F a(B#) so
de�ned is bounded and continuous.

Proof: Boundedness: Consider

[]D�1[] = sup
A#

[]F a(B#)[]

1 + []A#[]N
� sup
t;A#

[] eF at ( eB#t )[]t
1 + []A#t []

N
t

� sup
t;A#

supu

sup��t

 eF� (u� )� eF� (u#� )
�
� k�(�)k

1 + kutkNt
1 + (m �

u#t 
t
)N

;

where we use (6-22) and (6-28),

�M � ([]F [] + sup
t;u#

 eFt(u#t )
t

1 + (m �
u#t 

t
)N
) <1 :

Continuity: Let D�1(A#) = F a(B#) and D�1(A[) = F a(B[). Consider

[]F a(B#)� F a(B[)[] = sup
t
[] eF at ( eB#t )� eF at ( eB[t )[]t

� sup
t;u

��� eFt(ut)� eFt(u#t )�  eFt(ut)� eFt(u[t)��� �M
1 + kutkNt
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� sup
t;u

 eFt(u#t )� eFt(u[t)
t

1 + kutkNt
�M �

F (u#)� F (u[) �M : (6-42)

However, using Lemma 26

u# � u[ � [](u#)� (u[)[] � 1 +
�
M + []A#[]

m

�N
m

;

therefore, using this, the continuity of F and (6-42), D�1 is continuous. �

Summary

In this chapter we analyzed the generalized adjoint system. The main theme is invertibility.
Initially, we found that F a is one to one when F is onto and F a is onto when F is one to one.
With some conditions, F is one to one when F a is onto and F is onto when F a is one to one.
The analysis continues from the functional viewpoint. The lower portion of Figure 2

depicts the situation. Four equations give the essentials: Equations (6-5), (6-21), (6-22), and
(6-23). Starting with u 2 U , following Figure 2, the operator  maps U onto U#. A# =  (u)
is an input-output system form of the input u. This is Equation (6-5). The operator � maps
F to G. Equation (6-21) gives the auxiliary map to compute G

�
A#
�
= B# 2 Y a. At the top

of Figure 2, the generalized adjoint gives F a
�
B#
�
= B#F 2 Ua. This is Equation (6-22).

Finally, the equivalence operator, Equation (6-23), gives B#F � A#. The remainder, and
bulk of this chapter, is an analysis that provides boundedness and continuity conditions for
the systems and transformations.
The upper portion of Figure 2 shows the situation depicted in Figure 1.
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7 NOISE AND DISTURBANCE BOUNDS USING ADJOINTS

We consider the generalized adjoint in computing bounds for noise and disturbance inputs.
The method of adjoints has been discussed for traditional input-output systems; for example,
in Laning and Battin [4]. Zarchan [14] gives a discussion of adjoints in connection with noise,
disturbances, and other error sources in the homing loop of a missile autopilot. As discussed
in these two references, the adjoint facilitates the calculation of noise and disturbance budgets
and this will be reproduced, to some extent, in the context of generalized adjoints. Let the
input be represented by

u = (u1; u2) (7-1)

where the �rst component u1 of u nominally represents the noise inputs and the second
component u2 nominally represents the disturbance inputs. The transfer function between
noise input and the output and the disturbance input and the output are assumed to be
di¤erent �which is usually the case. Toward the ful�llment of the hypotheses of Lemmas 23
through 30, we assume � is a constant � in this chapter. We will need that  be monotonic.
Lemma 27 gives this if the input space (7-1) is a Hilbert space. The inner product for the
compound input may given by

hu; vi = h(u1; u2); (v1; v2)i = hu1; u2i+ hv1; v2i : (7-2)

With the tapered L2 norm used on u1 and u2; and the inner product (7-2), the input space
(7-1) is a Hilbert space. We represent the system in compound form as follows:

y = F (u) = F (u1; u2) : (7-3)

In this chapter, the CN topology is used for F , although in the case of noise and
disturbance inputs it may be more reasonable to use the sup-norm topology of bounded
spaces, C0. Assume that the output response due to noise and disturbance inputs for an
acceptable design is �xed and bounded. The objective is to determine maximum allowable
noise and disturbance, i.e., determine a noise budget and a disturbance budget. Once these
budgets have been determined, measures are taken so that excessive noise and disturbance do
not enter the system. These measures may include �ltering, design, and components.
Typically the noise and disturbances enter the system independently. Therefore, the noise
budget and disturbance budget are computed such that for any noise within the noise budget,
together with any disturbance within the disturbance budget, the output response due to
noise and disturbance is acceptable. We assume that the system is monotonic in the noise and
disturbance, i.e., greater input noise/disturbance results in greater output noise/disturbance.
Speci�cally, F monotonic in noise and disturbance means that given (u1; u2) and (u01; u

0
2) such

that k(u1; u2)k � k(u01; u02)k implies kF (u1; u2)k � kF (u01; u02)k.
Using the standard method (not using adjoints), various u1 and u2 are fed into (7-3),

together and separately, since F is nonlinear. By observing y, budgets for u1 and u2 would be
determined. With adjoints, the budgets are simultaneously determined.
Consider the bound on the output due to the noise and disturbances. We need the output

kyk = kF (u)k � C, where C is this bound. De�ne a subset of B,
BC

�
= fBjB = (y); kyk = Cg. Since we have that  is monotonic function, we only need

B 2 BC to correspond to y0s at the noise and disturbance bound, which is the edge of the
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shape in the transformed space. De�ne AC � A
�
= fAjA = F a(B); B 2 BCg. Going back to

the input space, de�ne U � UC
�
= �1(AC). Now compute

u1max = max ku1k such that (u1; u2) = u 2 UC :

Similarly, de�ne u2max. These are the noise and disturbance bounds. This is analogous to
portions of the situations presented in [4] and [14].
In summary, the noise and disturbance e¤ects at the output are design to quantities.

Using the upper and left sides of Figure 2, U is determined. The monotonicities of the system
and the transformation  are essential. The input end has the same monotonicity but does
not have the previously mentioned edge to work with. Two cases may be addressed with
regard to the system input. First, the case where the design is around a �xed input, or
equivalently, an autonomous system. Second, take the input and disturbance together. The
input u is normally modeled to enter the system at the same location as the disturbance d.
This model would have u2 = u+ d. In this case, the disturbance bound discussed would be
parcelled out between the input and the actual disturbance.
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8 EXAMPLE

In this chapter, an illustrative example is presented. An integral operator representation
will be used for the system mapping discussed in Chapter 2. A few of the constructions of this
report are illustrated with this example. Let Ft = f(Y0; Ft; U0)g, a space of causal
input-output systems, be given by a second degree integral operator. The system equation is

Ft(u0)(�) =

Z 1

0

Z 1

0
f(t+ �; �1; �2)u(� � �1)u(� � �2)d�1d�2 ; (8-1)

where �1 < � � 0. The input space U0 is the space of real valued L2 time functions over
(�1; 0] and Y0 is the Banach space of real valued L2 time functions over (�1; 0]. Also, the
kernel f satis�es

f(t; v1; v2) = 0 for v1 < 0 or v2 < 0; (8-2)

which is the usual causality condition. The C2(U0; Y0) norm will be used on Ft. It is shown in
Appendix B of [10] that if f 2 L2(<3), then F is bounded. That is, if

kftk
�
=

�Z 0

�1

Z 1

0

Z 1

0
jf(t+ �; �1; v2)j2d�1d�2d�

�1=2
<1

then
ky0k0 � kftk � ku0k

2
0 :

Hence, []Ft[]0 � kftk. Recall from (2-8) that []F [] = supt[]Ft[]0. For Bt = f(Yt; Ft; U0)g, consider
the space of causal linear time varying input-output systems represented by

Bt(y0)(�) =

Z 1

0
b(t+ �; �)y(� � �)d� (8-3)

where �1 < � � 0 and Z0 the Banach space of real valued L2 time functions over (�1; 0]. A
su¢ cient condition for B to be bounded is b 2 L2(<2).
The generalized adjoint system F at : Y

a
0 ! Ua0 of Ft is given by

F at (B0)(u0)(�) = (B0Ft)(u0)(�) = A0(u0)(�)

=

Z 1

0
b(�; �)

Z 1

0

Z 1

0
f(t+ � � �; �1; �2)u(� � � � �1)u(� � � � �2)d�1d�2d� : (8-4)

The input-output system A0 in (8-4) is not in the form of an integral operator; however, it
can be put in that form by interchanging the order of integration. We conclude that

A0(u0)(�) =

Z 1

0
b(�; �)

Z ���

�1

Z ���

�1
f(t+ � � �; � � � � �1; � � � � �2)u(�1)u(�2)d�1d�2d�

=

Z �

�1
b(�; � � �)

Z �

�1

Z �

�1
f(t+ �; � � �1; � � �2)u(�1)u(�2)d�1d�2d� ;
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interchanging the order of integration and using (8-2),

=

Z �

�1

Z �

�1

 Z �

max(�1;�2)
b(�; � � �)f(t+ �; � � �1; � � �2)d�

!
u(�1)u(�2)d�1d�2

=

Z 1

0

Z 1

0

 Z �

max(���1;���2)
b(�; � � �)f(t+ �; � � � + �1; � � � + �2)d�

!
u(� � �1)u(� � �2)d�1d�2 ; (8-5)

which is in the form of a second order integral operator with the term inside the parentheses
in (8-5) being the kernel. Su¢ cient conditions to interchange the order of integration are
b 2 L2(<2), f 2 L1(<3) and u 2 L2(<).
We verify various properties of the generalized adjoint which were presented earlier. To

demonstrate that F a is memoryless, as given by Proposition 10, consider two systems B1; B2

of the form (8-3) such that []B1 �B2[]s;0 = 0, for �1 < s � 0. Then

F at (B
1
0 �B20)(u0)(�) = (B10 �B20)Ft(u0)(�)

=

Z 1

0
(b1(�; �)� b2(�; �))

Z 1

0

Z 1

0
f(t+�� �; �1; �2)u(�� �� �1)u(�� �� �2)d�1d�2d� = 0 ;

where s � � � 0, for all u0 2 U0. Therefore, []F at (B10 �B20)[]s;0 = 0, and F a is memoryless (and
causal).
To demonstrate the time invariance of F a when F is time invariant, also in Proposition 10,

let f(t; �1; �2) = f(t0; �1; �2) for all t; t0 2 <. Consider (recalling Rs is the right translate from
De�nition 1 and R�s is the adjoint right translate from Chapter 3)

(L�sF
a
t (R

�
sB0))(u0)(t) = (Ls(RsB0LsFt)Rsu0)(�)

=

Z 1

0
b(�; �)

Z 1

0

Z 1

0
f(t+ � � � + s; �1; �2)Rsu(� � � + s� �1)Rsu(� � � + s� �2)d�1d�2d�

=

Z 1

0
b(�; �)

Z 1

0

Z 1

0
f(t+�� �+ s; �1; �2)u(�� �+ s� �1� s)u(�� �+ s� �2� s)d�1d�2d�

= F at (B0)(u0)(�) :

Hence, F a is time invariant.
Consider the form of (6-21) for the system (8-1) of this example,

G(A#)(y)(t) =
yt � eFt(u#t )

t
� �(t)

=

 Z t

�1

yt (�)� Z 1

0

Z 1

0
f(�; �1; �2)u

#(� � �1)u#(� � �2)d�1d�2
2 d�

!1=2
� �(t) :

The form of (6-22) and (6-23) for this example is (given f is one to one),

(F a(B#))u(t) =
 eFt(ut)� eFt(u#t )

t
� �(t)
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=

�Z t

�1

Z 1

0

Z 1

0
f(t+ �; �1; �2)

�
u(� � �1)u(� � �2)� u#(� � �1)u#(� � �2)

�
d�1d�2

2 d��1=2 � �(t)
�
�Z t

�1

u(�)� u#(�)2 d��1=2 � �(t) :
Note F is one to one if f(t; v1; v2) 6= 0 8 t; v1 > 0; v2 > 0.
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9 SUMMARY AND CONCLUSIONS

A generalized adjoint system for a causal dynamical input-output system has been de�ned.
The input-output system may be nonlinear and time varying. The generalized adjoint system
is patterned after adjoints of bounded linear transformations in Banach space, and inherits
various properties from the original input-output system. The generalized adjoint system is
shown to be a representation of the inverse of the original input-output system. Finally, the
generalized adjoint system may be of some use in computing bounds for noise and disturbance
inputs to the original input-output system.
An input-output system is denoted by a triple (Y; F; U) where U is the input space, F is

the system map, and Y is the output space. The generalized adjoint system of (Y; F; U) is the
system (Ua; F a; Y a) where Y a = f(Z;B; Y )g and Ua = f(Z;A;U)g. The generalized adjoint
system is de�ned by A = F a(B) = BF 2 Ua for B 2 Y a. Note that the input and output
spaces of the generalized adjoint system, Y a and Ua respectively, are themselves spaces of
causal input-output systems. The causal input-output system B 2 Y a may be viewed as a
time function by considering its system trajectory: t! Bt. The spaces Y a and Ua are to be
selected and speci�c choices were made to ful�ll the needs of the report.
The results up to Proposition 17 concern the generalized adjoint system and the

generalized adjoint map. These results include that the generalized adjoint system is always
linear and memoryless. If the original input-output system is time invariant and/or bounded,
then the generalized adjoint is time invariant and/or bounded. The generalized adjoint map is
the map from a family of input-output systems F = f(Y; F i; U)g to their generalized adjoints
Fa = f(Ua; F ia; Y a)g (same input and output spaces for the families). For bounded
input-output systems, the generalized adjoint map is bounded and preserves translations.
Under additional hypotheses, the generalized adjoint map is Lipschitz continuous and is
bounded below, implies its inverse is continuous. The Hahn-Banach theorem is used to obtain
this result.
In the �rst section of Chapter 6, Lemmas 18 through 21 show, in an algebraic sense, that

the generalized adjoint system is one to one/onto when the original system is onto/one to one,
and vice versa. In the second section of Chapter 6, a functional analysis of the generalized
adjoint system representing the inverse of the original system is given. The input and output
spaces of the generalized adjoint system are not the same as the output and input spaces of
the original system. Because of this, an auxiliary input-output system (Y a; G; Ua) is de�ned
which is related to the original system and has the same input and output spaces as the
generalized adjoint system, but switched. De�ne A# 2 Ua of the form
A#(u)(t) =

ut � u#t 
t
� �(t), where � is an element of the equivalence class z, for some z 2 Z,

with �(t) 6= 0 for all t, (the sup norm is used for Z). The set of all A# is A# � Ua. A map
 : U ! A# de�ned by (u) = A#.  is one to one by construction. Lemmas 22 through 27
show the A# 2 A# are causal, bounded, and uniformly continuous input-output systems; that
 is monotonic, bounded, and uniformly continuous; and that �1 is bounded and continuous.
(Hence,  is a homeomorphism.) The map G is de�ned by

G(A#)(y)(t)
�
=
(y � F (u#))t

t
� �(t) :

The map G is related to F in that if y# = F (u#) and A# 2 A# and B# 2 B# are derived
from u# and y# respectively as described above (with ), then G(A#) = B#. Let � be the
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map � : F ! G (�(F ) = G). Lemmas 28 through 30 show that the auxiliary systems G are
memoryless, bounded, and continuous; that � is bounded and continuous; and that ��1 is
bounded and continuous in a coarser topology. We showed F a inverts G (hence F ) by de�ning
an equivalence relation for systems in A, [see (6-22) and Figure 2]. Lemmas 31 and 32
consider the boundedness and continuity of the equivalence relation.
Chapter 7 demonstrates how generalized adjoints may be used to compute noise and

disturbance bounds for an input-output system. This is similar to part of the adjoints of
traditional input-output systems (see for example Laning and Battin [4]).
The results of Chapters 4 and 5, and several of the results in Chapter 6 are illustrated in

Chapter 8�s example with a system represented by a second degree integral operator. The
form of the auxiliary system is also shown with this type of system.
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This appendix presents various aspects of the input-output system topology that is used in
this report. As appendices are required to be self-contained, we include the de�nitions of
�tted families (FFs) of time functions, and other relevant de�nitions, which are also found in
the main body of this report.

De�nition A-1 ([A-1]) Let L = L(<; E) be a linear space of time functions from < into a
Banach space E such that any translate of a function in L is also a function in L. Let
N = fk�ks;t ;�1 < s < t <1g be a family of seminorms on L satisfying the
following conditions:
(1) For f1; f2 2 L, if f1(�) = f2(�) for s < � � t then kf1 � f2ks;t = 0.
(2) Let L� denote shift to the left by � . For all f 2 L, kL�fks��;t�� = kfks;t.
(3) Let r < s < t. Then for all f 2 L, kfks;t � kfkr;t.
(4) Let r < s < t. Then for all f 2 L, kfkr;t � kfkr;s + kfks;t.
(5) There exists 0 < � � 1 and K � 1 such that if 0 < t� r � � and r < s < t, then for

all f 2 L, kfkr;s � Kkfkr;t.
The pair (L;N ) is called an FF of seminorms on L. The normed linear space formed from
equivalence classes of functions in L with norm k�ks;t is denoted Hs;t. The elements of Hs;t
are the equivalence classes determined by: f � g, f; g 2 L if and only if kf � gks;t = 0. They
are denoted us;t, ys;t, etc. The set fHs;tg, �1 < s < t <1, is the FF of normed linear spaces
given by (L;N ).

For f 2 L, put kfks;t �= sups<��t kfks;� . An FF (L;N ) and fHs;tg, �1 < s < t <1, can
be augmented to include k�k�1;t by taking the limit s! �1, since by (3) of De�nition A-1
kfks;t is monotone nondecreasing as s! �1 with t �xed. Let L0 = ff 2 Lj
lims!�1 kfks;t <1; t 2 <g. For f 2 L0, de�ne

kfkt
�
= lim
s!�1

kfks;t = kfk�1;t : (A-1)

With the meaning of (L;N ) thus extended, k�ks;t is de�ned for �1 � s < t <1. The
left-expanded FF of seminorms is thereby de�ned and is denoted (L0;N ). It still satis�es all
the Conditions (1); � � � ; (5).
We next de�ne k�ks;1 and Hs;1. For an FF, this is done by taking the supremum. Let

L00 = ff 2 L0j supt kfkt <1g. For f 2 L00, de�ne

kfks;1
�
= sup

t>s
kfks;t ; �1 � s : (A-2)

It may be readily veri�ed that if (L;N ) is an FF for indices satisfying �1 < s < t <1 then,
with de�nitions given by (A-1) and (A-2), (L00;N ) is an FF for indices satisfying
�1 � s < t <1 and satis�es Conditions 1, 2, 3, and 5 of De�nition A-1 for indices
�1 � s < t � 1. f(L00;N ); k�ks;t ; �1 � s < t � 1g is called the expanded family of
seminorms determined by (L;N ).

For f 2 L00, we put
kfk �= sup

t2<
kfkt = kfk�1;1 : (A-3)

The normed linear space consisting of equivalence classes of functions in L00 with the norm
(A-3) is called the bounding space H for the family fHs;tg. For �1 � r < s < t <1, and g,
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h 2 L; the splice of g and h over (r; t] at s is de�ned and equals f if

f(�) =

�
g(�); r < � � s
h(�); s < � � t

belongs to L. It is denoted fr;t = gr;s+! hs;t. For t =1, the splice of g and h equals f if

f(�) =

�
g(�); r < � � s
h(�); s < �

belongs to L. It is denoted fr;1 = gr;s+! hs;1.
Let � be a mapping from a normed linear space X into a normed linear space Y . As shown

in Appendix A of [A-3], for any nonnegative integer N , the N -power norm for � is given by

[]�[](N)
�
= sup
x2X

k�(x)k
1 + kxkN

(A-4)

when the right side exists. The sub (N) is often omitted from the left hand side of (A-4).
A mapping F : U ! Y , is called a (global) input-output mapping [or referred to as an

input-output system (Y; F; U)]. The spaces U and Y are bounding spaces.

De�nition A-2 Let (Y; F; U) be an input-output system. F is a causal mapping and (Y; F; U)
is a causal system if and only if for all t and for all u; v 2 U such that ku� vkt = 0 it follows
that kF (u)� F (v)kt = 0.

If F satis�es De�nition A-2 it determines a mapping from Ut into Yt, denoted eFt, that
satis�es

 eFtut � (Fu)t
t
= 0. We call eFt a truncated input-output mapping and de�ne the

centered truncated input-output mapping Ft : U0 ! Y0 by Ft(u0)
�
= Lt eFtRt(u0).

Using (A-4) on the truncated system mapping, we have

[]Ft[](N)
�
= sup

u0

kFt (u0)k0
1 + ku0kN0

= sup
ut

 eFt (ut)
t

1 + kutkNt
= [] eFt[](N) (A-5)

In [A-2] and [A-4] the norm for the global input-output mapping is de�ned by

[]F []�
�
= sup

u

kF (u)k
1 + kukN

: (A-6)

However, in this report input-output systems are themselves used as inputs to the generalized
adjoint systems. Therefore, the norm for the global input-output mapping should be similar
to the norm for an input, as in (A-3). In this report the global input-output mapping is
de�ned by

[]F [] = sup
t
[]Ft[]0

�
= sup

t
[]Ft[]�1;0 ; (A-7)

[A-3]. We can use subscripts on the operator norms similar to the subscripts in (A-3). The
two global system norms (A-6) and (A-7) are related by

[]F []� � []F [] :
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Denote the causal bounded input-output mappings from U to Y by DN (U; Y ). The following
lemma (a special case of Lemma A.1 in [A-3]) gives conditions so DN (U; Y ) is a Banach space.

Lemma A-3 ([A-3]) Let Y�b;0 and Y be Banach spaces where 0 � b � 1. Then
DN (U0; Y�b;0) is a Banach space with norm [] � []�b;0 and DN (U; Y ) is a Banach space with
norm [] � [].

With (A-6) the de�nition of boundedness, continuity does not imply boundedness for a
linear system, which is usually the case. So, we de�ne a stronger form of continuity.

De�nition A-4 ([A-3]) An input-output system (Y; F; U), F 2 DN (U; Y ) is compatibly
continuous if the truncated maps Ft are equicontinuous.

Our initial lemma relates continuity with compatible continuity.

Lemma A-5 ([A-3]) Compatible continuity is stronger than continuity.

Proof: If ku� vk = supt ku� vkt < �, i.e., ku� vkt < � for all t, then eFt (ut)� eFt (vt)
t
< ", for all t. Hence, kF (u)� F (v)k = supt

 eFt (ut)� eFt (vt)
t
< ". �

And now we have the following lemma:

Lemma A-6 ([A-3]) Let (Y; F; U) be a linear input-output system. Then compatible
continuity is equivalent to boundedness.

Proof: (i) Consider boundedness: If (Y; F; U) is compatibly continuous, for all ku0k0 = 1
or k�u0k0 = �, (kFt (�u0)k0 < ") then kFt (u0)k0 < "=�, for all t. Hence,

kFt (u0)k0
ku0k0

<
"

�
;

for all t, and (Y; F; U) is bounded.
(ii) Consider compatible continuity: We �rst consider the observation that for Ft linear,

the linear operator norm is equivalent to (A-5). Observe that,

[]Ft[] = sup
u0

kFt (u0)k0
1 + ku0kN0

= sup
u0

kFt (u0)k0
ku0k0

� ku0k0
1 + ku0kN0

� sup
u0

kFt (u0)k0
ku0k0

= []Ft[](linear) :

Also,

[]Ft[] = sup
u0

kFt (u0)k0
1 + ku0kN0

� sup
ku0k=1

kFt (u0)k0
1 + ku0kN0

= sup
ku0k=1

kFt (u0)k0
2

=
1

2
� sup
ku0k=1

kFt (u0)k0 =
1

2
� []Ft[](linear) :

Putting these together, we have

1

2
� []Ft[](linear) � []Ft[] � []Ft[](linear) ; (A-8)
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which gives the equivalence. Getting to the compatible continuity, if (Y; F; U) is bounded,

kFt (u0 � v0)k0 � []Ft[](linear) ku0 � v0k0

� 2 � []Ft[] ku0 � v0k0 � 2 � []F [] ku0 � v0k0 : �

Denote the set of causal bounded, compatibly continuous input-output systems by
CN (U; Y ). It may be shown that if � = +1, 0 2 U , and U is closed with respect to splicing,
compatible continuity is equivalent to continuity [A-3].

Lemma A-7 ([A-3]) Let (Y; F; U) be a causal input-output system. If � = +1, 0 2 U and
U is closed with respect to splicing, compatible continuity is equivalent to continuity.

Proof: Let kut � vtkt < �. Since � = +1, for all s < t, kus � vsks < K � �. This givesut+! 0t;1 � vt+! 0t;1
 < K � �. By the continuity of (Y; F; U), given " > 0, we may choose

K � � (independent of t) such that
F �ut+! 0t;1

�
� F

�
vt+! 0t;1

� < ". This givesF �ut+! 0t;1
�
� F

�
vt+! 0t;1

�
t
< ", and by causality,

 eFt (ut)� eFt (vt)
t
< ". This is

compatible continuity. �
The global input-output system being compatibly continuous gives that the truncated

systems are continuous. This may not be said if the global input-output system is continuous,
as demonstrated by the following example:

Example A-8 ([A-3]) In this example a linear input-output system (Y; F; U) is given such
that the global map is bounded under (A-6) and the truncated map is unbounded. Let U be the
space of real-valued Lebesgue measurable functions with the exponentially tapered �tted family
of seminorms

kukt =
Z t

�1
ju (�)j ea(t��)d� : (A-9)

Let Y be the same as U but with

kykt =
Z t

�1
jy (�)j eb(t��)d� (A-10)

such that �1 < a < b < 0. Let F be the identity. Since F is linear, the ones in the
denominators of (A-5) and (A-6) may be omitted, (A-8). Consider the class of inputs

uT (t) =

�
ext, � T < t � 0
= 0 elsewhere

:

such that a < x < b. We have that

[]F0[] �
kF0 (uT )k0
kuT k0

=

���R 0�T e(x�b)�d� ������R 0�T e(x�a)�d� ��� =
���� 1

(x� b)

�������� 1

(x� a)

���� �
���e(x�b)� �0�T ������e(x�a)� �0�T ��� =

�
x� a
x� b

� �����1� e(b�x)T1� e(a�x)T

����� :
Since (a� x) is negative, the denominator tends towards one as T increases. Since (b� x) is
positive, the numerator becomes larger and larger without bound, as T increases. Hence, F0 is
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not bounded. Next, consider the global map. For all u 2 U , de�ne

m
�
= sup

p

Z p+1

p
ju (�)j d� <1 ; (A-11)

for all p 2 <. Taking (A-9) and using (A-11), we obtain

kuk = sup
t

Z t

�1
ju (�)j ea(t��)d� � m � ea :

Similarly taking (A-10)

kyk = sup
t

Z t

�1
jy (�)j eb(t��)d�

= sup
t

1X
k=0

Z t�k

t�(k+1)
jy (�)j eb(t��)d� � m �

1X
k=0

ebk :

Substituting in (A-6), we see that

[]F []� � m �
P1
k=0 e

bk

m � ea =

P1
k=0 e

bk

ea
= C <1 :

Since C is independent of u, F is bounded using the [] � []� norm, (A-6).
It is the author�s opinion that it is unsettling when a causal system may have a bounded

global map while the induced truncated systems are unbounded. This example illustrates this
possibility when the global norm is given by (A-6). These types of systems, in the author�s
opinion, should be excluded or treated specially. When the global norm is given by (A-7), this
case is automatically excluded.
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